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Abstract 

A technique based on the Wiener filter is presented for filtering calorimetric signals. The 
filter was applied to a simulated calorimetric signal with three different signal-to-noise levels. 
Smoothing takes place in the frequency domain using windows that allow the power spectrum 
of the signal noise to be estimated a priori. In addition, the filter removes the parasitic 
oscillations that the fast Fourier transform introduces during deconvolution. 

INTRODUCTION 

All the deconvolution processes recently applied to conduction calorime- 
try [l-6] contain a smoothing step in their formalism, either implicitly or 
explicitly. There have also been studies of sophisticated signal smoothing 
procedures which are applied after the deconvolution step [7,8]. Most of 
these techniques operate in the time domain using digital or analogous 
low-pass filters that remove the high frequencies due to noise. For decon- 
volution with a fast Fourier transform (FFT), filtering is carried out in the 
frequency domain by cutting off at a particular point in the Fourier 
spectrum of the signal; this creates parasitic oscillations, which then have to 
be removed [7]. Other smoothing procedures require a laborious study of 
each calorimeter to get as much information as possible about the autocorre- 
lation function of the noise [8]. 

This article discusses a smoothing technique based on the classical Wiener 
filter, for which the power spectrum of the noise contaminating the signal 
must normally be modelled or at least partially known. The salient point is 
that cutting the frequency spectrum of the noisy signal at a certain frequency, 
above which we suppose there is only noise, can be made relatively indepen- 
dently of what is known about the calorimetric noise. A single parameter is 
needed to define the filter completely. 

It is important to know the degree of smoothing, since trying to improve 
the signal leads to deformations in it which must be quantified. For this 
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method it is straightforward, since the single filter parameter determines the 
cut-off frequency and the degree of attenuation for each frequency that is 
allowed to pass (of great importance for calorimetric studies of oscillating 
phenomena [9]). Furthermore, comparing the power spectra of the unfiltered 
and filtered signals gives a measure of the “energy” lost in smoothing. 

In the following section we will show how the calorimetric signals used to 
test the filters were generated and why the classical application of the 
Wiener optimal filter does not provide a satisfactory solution to the prob- 
lem. In the second section three filters will be postulated and their effects in 
the time and frequency domains will be studied. 

CLASSICAL FREQUENCY FILTERING 

Let x(t) be the power dissipated in the calorimetry cell and y(t) be the 
corresponding thermogram. Assuming the use of a digital system to process 
these signals, let x[k] and y[k] be the values of these temporal functions at 
t = kT, where T is the sampling period of the signal. The thermogram will 
contain noise, which is assumed to be independent of x[ k] and y[ k]. In Fig. 
l(a), a thermogenesis and its corresponding thermogram are shown simu- 
lated for a calorimeter with parameter 71 = 200, r2 = 90, 73 = 10, pi* = 20 s 
(already used elsewhere [6]) and sensitivity 5 (this parameter is not im- 
portant here; this value was chosen to unify the scales on the graphs). To 
reproduce an experimental signal, noise was added to the thermogram using 
the IMSL software package to generate pseudo random numbers with a 
normal distribution, which were added to the thermogram with signal-to- 
noise ratios of 100, 80 and 60 dB. 

Performing the deconvolution of the three simulated thermograms gave 
the signals shown in Figs. l(b), l(c) and l(d) for 100, 80 and 60 dB 
signal/noise, respectively. The deconvolution technique developed in ref. 1 
was used, making the value of the compensation poles as small as possible to 
give a stable system without introducing deformations into the signal. Two 
pulses of 0.5 s were used for the 100 dB signal, two of 1.0 s for the 80 dB 
signal, and two of 2.5 s for the 60 dB signal. These values could be increased 
to give smoother signals, but this type of temporal filter rapidly distorts the 
signal. 

The noisy signal can be treated as the sum of two other signals 

z[k] =x[k] +n[k] 

where x[k] is the real thermogenesis we want to reconstruct from the 
measurement z[ k], eliminating the unknown noise n [ k]. Let f [ k] be the 
optimal filter that gives 2[k] as the best approximation to x[k], hence 

2(w) =F(w)Z(w) (2) 
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where the capitals stand for the Fourier transforms of the functions repre- 
sented by the corresponding small leiters and w is the frequency. By best 
approximation here we mean that X(w) is closest to X(w) in the least- 
squares sense, i.e. 

Jrn ]Z(t)-x(t)]2dt=/w IX(w)-X(w)]*dw is a minimum (3) 
-CC -IX 

Using eqns. (1) and (2), this condition becomes 

J 
O” 1 X(w)[F(w) -11 +N(w)F(w) ]* dw is a minimum (4) 

--oo 

Multiplying out the integrand (because integration is over all frequencies, 
X(w) and N(w) are not correlated) 

JW (lXb4121~-fIw)12+ INw)121~b)12)dw is a minimum 
-CC 

(5) 

The integral is a minimum if and only if the integrand is a minimum with 
respect respect to F(w) for any frequency w. Hence, the optimal filter is 
defined as 

F(w) = IJW I2 
IN4 I*+ Iw4 I2 

(6) 

It is seen that both f(t) and F(w) are real functions. Because x[k] and n[ k] 
are unknown, it is necessary to estimate their power spectra. With regard to 
the denominator of eqn. (6) it is reasonable to make the approximation 

lxb)12+ INw)12- lz(w)12 (7) 
The power spectrum of z[k], for the signal with signal-to-noise ratio of 80 
dB (corresponding to Fig. l(c)), is shown in Fig. 2(a) on a logarithmic scale. 
To estimate the numerator it is necessary to estimate the noise. A simple 
way is to suppose that the noise corresponds to all the frequencies above a 
cut-off frequency w,, so that the sp_ectrum above w, corresponds to I N(w) I * 

and that below corresponds to I X(w) I *. This describes an optimal rectan- 
gular filter (Fig. 2(a)) 

F(w)= 
1 WlW, 

0 w>w, 

In the figure, w, = 34/256 Hz; that is, the spectrum is cut off at the point 
m = 34. The spectrum is calculated from a FFT of N = 256 points with a 
signal sampling period T = 1 s (in general w = m/NT). 

Applying the filter defined in eqn. (8) to the signal in Fig. l(c) (80 dB 
signal/noise) gives the filtered signal shown in Fig. 2(b). It can be seen that 
the noise has been reduced dramatically, but that a parasitic oscillation has 
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appeared due the filter’s action of abruptly cutting the power spectrum. This 
effect has been described for the deconvolution of calorimetric signals by an 
FFT technique [7]. A better system can be obtained by modifying the filter 
that has been developed. 

NON-RECTANGULAR WINDOWS 

Three ways of “softening” the filter constructed will be studied 

The Welch window 

F(j) = 1 - [2( j - 1)B/N]2 

the Parzen window 

F(j) = 1 - ]2(j - l)B/N 1 

(9) 

(10) 

and the Harming window 

F(j) = i{l- cos 257 
1 

(j- l)B+N/2 
N Ii 

where F(j) = F( w =j/NT), N is the number of points used to calculate the 
FPT (a power of 2) and T is the sampling period of the signal. The 
parameter B defines the cut-off frequency of the filter 

w, = j,/NT con j, = N/2B + 1 (12) 

Putting B = 0 gives no filtering, at B = 1 (Fig. 3) no frequency is cut-off, but 
the signal is attenuated, whilst B = 3.909 gives a cut-off at m = 34 (Fig. 3), 
which corresponds to the same frequency used for filtering with the rectan- 
gular window [eqn. (S)]. 

These filters are applied in an unconventional way here. The defining 
equations (9)-(11) correspond to the classical forms of these windows, but 
here they are used in the frequency domain, where it is normal to use the 

Fig. 3. The non-rectangular windows used as optimal filters for two values of the parameter 
B; w, N and T are defined as before (in this case N = 256 and T = 1 s). 
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Fourier transforms of the same filters [lo]. Other filters could be employed 
[10,11], but they differ little from those used here. The three filters vary in 
their treatment of the frequency spectrum: the Welch window weakly filters 
low frequencies and rapidly falls to zero at high frequencies; the Parzen 
window has the most abrupt behaviour at low frequencies; the Hanning 
window treats low frequencies more gently but descends more rapidly at 
high frequencies. 

RESULTS 

Using the Welch window as an example, the effect of the non-rectangular 
windows on the estimated signal and the noise power spectra that were used 
in Fig. 2(a) for the rectangular window (80 dB signal/noise) is shown (Fig. 
4(a)). The noise power spectrum is no longer cut off at frequency w, but is 
practically constant across the whole frequency range; the signal power 
spectrum falls gently to zero. The reconstructed signal (Fig. 4(a)) has been 
cleaned of most noise, giving the shape of the original signal, and the 
parasitic oscillation has been removed. Comparing the areas under the 
power spectra before and after filtering, for the value B = 3.909 used here, 
shows that 97.5% of the “energy” of the original signal is conserved 
(practically the same value as with the rectangular window). 

Using the two other filters gives the results shown in Figs. 4(c) (Harming 
window) and 4(d) (Parzen window). The same parameter B has been used as 
before, which gives the same cut-off frequency, and, given the nature of the 
two windows, greater smoothing of the signal (the energy loss approaches 
3%). A smaller value of B (equal to a higher cut-off frequency) could be 
used in these two cases, since there is no oscillation and the signal is 
excessively distorted (above all for the Parzen window). 

Similar results were obtained for the other signal-to-noise ratios (using 
larger values of B in accordance with increasing signal-to-noise ratio). With 
B fixed, the Welch window gives the gentlest f~te~ng, followed by the 
Harming window and then the Parzen window, which treats the signal more 
severely. 

CONCLUSIONS 

Frequency filters that abruptly cut the frequency spectrum of a signal 
introduce an oscillation that limits their use. All of the non-rectangular 
filters described here are free from this drawback. A single parameter 
completely defines the filters, establishing the cut-off frequency and the 
fraction of energy of the power spectrum of the signal that is lost in the 
smoothing process. 



337 

REFERENCES 

1 C. Rey, J.R. Rodriguez and V. Perez Villar, Thermochim. Acta, 61 (1983) 1. 
2 R. Kechawarz, J.P. Dubes and H. Tachoire, Thermochim. Acta, 79 (1984) 15. 
3 J. Ortin, V. Torra, J. V&Is and E. Cesari, Thermochim. Acta, 70 (1983) 113. 
4 R. Prost and R. Goutte, Int. J. Control, 13 (1971) 1027. 
5 C. Rey, V. Perez Vi&r and J.R. Rodriguez, Thermochim. Acta, 87 (1985) 297. 
6 C. Rey, Thermochim. Acta, 147 (1989) 145. 
7 J.R. Rodriguez, C. Rey, V. Perez V&u, V. Torra, J. Ortin and J. Viiials, Thermochim. 

Acta, 63 (1983) 331. 
8 V. Perez Villar, C. Rey and J.R. Rodriguez, Thermochim. Acta, 79 (1984) 111. 
9 J.R. Rodriguez, V. Perez Villar, C. Rey and M. Garcia, Thermochim. Acta, 106 (1986) 27. 

10 A. PapouIis, Signal Analysis, McGraw-Hill, New York, 1977. 
11 D.F. EIliot and K.R. Rao, Fast Transforms: Algorithms, Analyses, Applications, Academic 

Press, New York, 1982. 


